
Suraj R. Pawar
Walker Department of Mechanical Engineering,

University of Texas at Austin,

Austin, TX 78712

Ethan S. Rapp
Walker Department of Mechanical Engineering,

University of Texas at Austin,

Austin, TX 78712

Jeffrey R. Gohean1

Walker Department of Mechanical Engineering,

University of Texas at Austin,

Austin, TX 78712

Raul G. Longoria2

Walker Department of Mechanical Engineering,

University of Texas at Austin,

Austin, TX 78712

e-mail: r.longoria@mail.utexas.edu

Parameter Identification of
Cardiovascular System Model
Used for Left Ventricular Assist
Device Algorithms
Advancement of implanted left ventricular assist device (LVAD) technology includes
modern sensing and control methods to enable online diagnostics and monitoring of
patients using on-board sensors. These methods often rely on a cardiovascular system
(CVS) model, the parameters of which must be identified for the specific patient. Some of
these, such as the systemic vascular resistance (SVR), can be estimated online while
others must be identified separately. This paper describes a three-staged approach for
designing a parameter identification algorithm (PIA) for this problem. The approach is
demonstrated using a two-element Windkessel model of the systemic circulation (SC)
with a time-varying elastance for the left ventricle (LV). A parameter identifiability stage
is followed by identification using an unscented Kalman filter (UKF), which uses meas-
urements of LV pressure (Plv), aortic pressure (Pao), aortic flow (Qa), and known input
measurement of LVAD flowrate (Qvad). Both simulation and experimental data from ani-
mal experiments were used to evaluate the presented methods. By bounding the initial
guess for left ventricular volume, the identified CVS model is able to reproduce signals of
Plv, Pao, and Qa within a normalized root mean squared error (nRMSE) of 5.1%, 19%,
and 11%, respectively, during simulations. Experimentally, the identified model is able to
estimate SVR with an accuracy of 3.4% compared with values from invasive measure-
ments. Diagnostics and physiological control algorithms on-board modern LVADs could
use CVS models other than those shown here, and the presented approach is easily adapt-
able to them. The methods also demonstrate how to test the robustness and accuracy of
the identification algorithm. [DOI: 10.1115/1.4053065]

1 Introduction

According to the American Heart Association’s 2020 report [1],
an estimated 6.2 million American adults suffered from heart fail-
ure (HF). The report also projects the prevalence of HF to increase
by 46% from 2012 to 2030. The best treatment for end-stage HF
is heart transplantation, but donor hearts are limited, so mechani-
cal circulatory devices called left ventricular assist devices
(LVADs) are commonly used to support patients waiting for a
donor heart (Bridge-to-Transplant) [2]. LVADs are implantable
pumps that comprise an inflow cannula to intake blood from a
failing left ventricle (LV), pumping through an outflow cannula to
deliver blood to the aorta. This device helps ensure there is suffi-
cient blood delivered to other organs. In some cases, LVADs can
provide sufficient support until a patient’s heart can recover
(Bridge-to-Recovery). Alternatively, LVADs are a necessary life-
saving solution for heart failure patients who are ineligible for
transplantation (Destination Therapy).

As the technology of LVADs has improved and matured,
opportunities for more reliable and therapeutic operation are made
possible using smart sensing [3–6] and high-level control algo-
rithms [7,8]. These advances often rely on a suitably chosen math-
ematical model of the cardiovascular system (CVS). Notably, it is
common to approximate the systemic circulation (SC) in the CVS
using Windkessel models [9,10] with the left ventricle modeled
by a time-varying elastance [11]. Models of the significant hemo-
dynamic effects are often represented using lumped-parameter

hydraulic elements, often conveyed using analog electrical cir-
cuits. Key model element parameters include, for example, aortic
compliance and systemic vascular resistance (SVR). Higher order
models of the CVS, such as the one used in Gohean et al. [12], are
of interest when a wider range of dynamics need to be studied.
However, for physiological estimation and control algorithms,
model complexity must be balanced with computational efficiency
[13]. In recent works, even a simple two-element Windkessel
model has been successfully used for physiological estimation and
control [14]. Further, a natural consequence of using the afore-
mentioned models for the design of such algorithms is the need to
identify suitable model parameters for a given model using the
measurements available. A higher order model could mean identi-
fication of a large number of parameters under the same measure-
ment constraints. Not only are the values of these parameters
patient-specific, but they may also vary over time [15].

Determining these parameters for a given patient can be classi-
fied as a parameter identification problem [16], either prior to or
alongside the initialization and implantation of an LVAD. Real-
time parameter identification of the CVS remains a challenge.
One reason is that measurements needed to perform the identifica-
tion procedure often require invasive sensors, which are undesir-
able and impractical for long-term implantation, and there has
been a lack of reliable sensorless techniques [7,8,17]. On the other
hand, considerable efforts have been made toward offline
approaches where taking relevant measurements invasively may
be acceptable. For example, these measurements could be col-
lected during the surgical implantation procedure for the LVAD.
In such a scenario, it is desirable for the offline parameter identifi-
cation algorithm (PIA) to rely on a minimal set of measurements.

This paper presents a three-staged approach for designing a
PIA for offline identification of a CVS model. In the first stage,
we study parameter identifiability to determine a subset of param-
eters that can be identified using available measurements. This
stage can highlight the set of unidentifiable parameters using the
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measurements available, thereby motivating the need to secure
more measurements, or to approximate their values based on
acceptable ranges for the patient type. Using the insights from the
first stage, the PIA is designed in the second stage where we use
available measurements and inputs to estimate the identifiable
parameters of the CVS using an unscented Kalman filter (UKF)
based on the CVS model. Finally, the third stage comprises meth-
ods to test the performance and robustness of the algorithm. The
remainder of the paper provides a demonstration of how this
approach can be applied to a specific model in order to design an
offline identification procedure. In particular, we demonstrate the
identification of a two-element Windkessel model with available
measurements of Pao, Plv, and Qa. The LVAD flowrate, Qvad, is
required as an input to the CVS model and is assumed to be meas-
ured as well.

2 Background

For the purposes of modeling, the CVS can be divided into
three major segments, namely, the LV, SC, and a lumped repre-
sentation of the right heart and pulmonary circulation (PC).
Researchers have sufficiently demonstrated the ability to identify
systemic circulation parameters using measurements of aortic
pressure (Pao) and aortic flow signals (Qa). Among the various
methods reported in literature, we might highlight Kalman Filter-
based approaches in Yu et al. [4] and the references therein, and
least squares approaches compared in Avanzolini et al. [18] and
the references therein. In most of these works, the PC is repre-
sented either by a constant pressure source or by a single fluid
compliance. A time-varying elastance (inverse of compliance)
approach to model the LV pressure (Plv) was initially proposed by
Suga and Sagawa [11] and has been widely adopted. According to
this approach, Plv can be calculated using the volume of blood
(Vlv) inside a chamber that exhibits a time-varying elastance
value. Several mathematical functions have been formulated to
model this time-varying elastance, and each function has a differ-
ent set of parameters. Unlike the SC, there is little consensus in
the choice of this mathematical expression and the identification
procedure for its parameters. Previous research has been done on
use of linear regression and nonlinear least squares methods for
estimating the elastance curve parameters using measurements of
Plv and LV volume (Vlv) [19,20]. The use of least squares curve
fitting to estimate a portion of the Plv is demonstrated in Refs.
[21] and [22]. The earliest work in use of nonlinear model-based
estimators to identify parameters of the time-varying elastance
model for Plv generation was reported in Ref. [23] and, more
recently, nonlinear optimization has been used to identify the LV
function parameters using arterial pressure and cardiac output
(CO) measurement in Ref. [24]. Most of these works use a specific
CVS model and set of measurements, both of which could differ
depending on the application of the end user. In the absence of an
identifiability stage, i.e., a technique for determining whether
parameters can be identified using available measurements, the
applicability of these methods for a specific application is not
assured.

In this paper, we address this issue by developing a systematic
approach that includes an identifiability stage that can be applied
to a broad range of system models and measurement sets. We
investigate the use of the UKF [25] to identify a simplified model
of the CVS, which can be used in sensing and control applica-
tions. The key benefits of using the UKF can be summarized as
follows:

� Unlike nonlinear optimization methods, there is no need to
preprocess the measurement signals to remove noise.

� The UKF can handle model nonlinearities in certain cases
better than other Bayesian estimators such as the higher-
order extended Kalman filter (EKF).

� Unlike the EKF, no linear approximations (e.g., Jacobians or
Hessians) of the model equations need to be calculated,
thereby making the UKF more computationally efficient.

In particular, we were interested in identifying the parameters
of the LV model used in Ref. [12] and in a previous work by our
group on estimation of SVR [6].

3 Materials and Methods

3.1 System Model. The choice of a CVS model affects the
ability to reproduce representative physiological signals of pres-
sures and flows. Complex models can replicate both low and high
frequency dynamics found in such signals. However, when
designing model-based algorithms for physiological parameter
estimation and control, these models exert additional computa-
tional burden. This is undesirable for LVAD applications where
the intent is to deploy these algorithms on-board microcontrollers.
As discussed in Sec. 1, we can divide the CVS model into three
sections of LV, SC, and PC. The CVS model used in this paper is
shown in Fig. 1, conveyed using an analog electrical circuit. The
LVAD is thus represented as a current source with flowrate, Qvad.
Each section of this model is briefly discussed below.

Left ventricle model: There is wide consensus on the use of a
time-varying elastance model for the LV. The choice of the math-
ematical expressions used for the elastance functions and Plv are
key differentiators among different approaches. In this paper, we
adopt a model presented in Ref. [12] that uses Eq. (1) to generate
Plv,

PlvðtÞ ¼ ð1� enÞAðeB �V ðtÞ � 1Þ þ enEmax
�VðtÞ (1)

Here, en represents normalized elastance, which is a function of
the normalized time (tn, normalized with cardiac cycle time tc)
and is parameterized with respect to the ventricular contraction
time (tvc); i.e., enðtnÞ ¼ enðtn; tvcÞ. The variable �VðtÞ is the differ-
ence between Vlv and the unstressed blood volume in the LV (V0),
�VðtÞ ¼ VlvðtÞ � V0. The term Emax is the maximum elastance that
occurs at peak ventricular contraction, while A and B are parame-
ters that characterize the passive elastance exponent when the
ventricle is at rest.

Systemic circulation model: For the SC, we use the two-
element Windkessel representation as shown in Ref. [10] that has
a single systemic capacitive element with compliance, Cs, and a
fluid resistive element for SVR, Rsvr. Although this simplified rep-
resentation does not capture high frequency characteristics accu-
rately, it has demonstrated satisfactory performance for
physiological estimation and control purposes [14]. In Sec. 5, we
discuss the use of such a model to estimate SVR within 3.4% of
its actual value.

Pulmonary circulation: The PC side of CVS is approximated as
a pressure source (Pr) [4,5]. This simplifies the model by remov-
ing the dynamics of the right side of the heart and the pulmonary
circulation by setting the systemic venous pressure and left atrial
pressure to a constant value in the model.

Valve flows: In the CVS, the aortic valve (AV) connects the LV
to the SC and the mitral valve (MV) connects the PC to the LV.
Each unidirectional valve is represented by a diode with a series

Fig. 1 Electric analog circuit of two element model
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resistor in the circuit diagram, and a square root law is used to
model the flowrate dependence on pressure drop (QR ¼

ffiffiffiffiffiffiffi
DP
p

)
[12]. The same resistance parameter, Rv, is used for each series
resistor in this study.

All the parameters of the model presented above, referred to as
CVS model hereafter, are summarized in Table 1.

The main objective of this paper is to use the three-staged
approach outlined earlier to design a method for identifying each
of these parameters. The dynamic equations of the CVS model are
summarized in state space form as follows:

States: x ¼ ½ �V Pao �T

Dynamics: _xðtÞ ¼ fsðt; xðtÞ; hÞ þ gðhÞQvad

Parameters: hð1 : 4Þ ¼ ½A B Emax Cs �T

hð5 : 8Þ ¼ ½Rsvr Pr Rv tvc �T

Outputs: y ¼ ½Plv Pao Qa �T

(2)

where gðhÞ ¼ ½�1 1=Cs�T. The vector-valued function fsðÞ
depends on the switching index s, which can either be 1 (repre-
senting ejection), 2 (representing filling), or 3 (representing isovo-
lumetric contraction/expansion). For each of these modes, the
definition of fsðÞ is given by Eqs. (4)–(6). Consequently, the
dynamical system can be classified as a switched system, where
the switching between different modes is based upon the state of
the flow through the aortic valve, Qa, and flow through the mitral
valve, Qm. Both valves cannot permit flow through them simulta-
neously, and this is ensured in the dynamical model by allowing
only one valve to be open at a time. It is permissible for both
valves to be closed simultaneously during isovolumetric contrac-
tion or expansion of LV. In this study, we assumed that the mea-
surement of Qa is available while Qm is estimated by the UKF.
Both of these are used to determine the mode according to Eq. (3).

Ejection: Qa > 0 and Qm ¼ 0

Filling: Qa ¼ 0 and Qm > 0

Isovolumetric: Qa ¼ 0 and Qm ¼ 0

(3)

f1 ¼
�Qa

1

Cs
Qa �

Pao

Rsvr

� �
2
64

3
75 (4)

f2 ¼
Qm

� Pao

RsvrCs

2
64

3
75 (5)

f3 ¼
0

� Pao

RsvrCs

2
64

3
75 (6)

3.2 Parameter Identifiability. The CVS model presented
above has eight parameters that need to be identified, as summar-
ized in Table 1. We assume that the available measurements are
Plv, Pao, and Qa, each of which can be expressed as a function of
CVS model states, parameters and inputs appearing in Eq. (2).
The input to the CVS model, Qvad, is also assumed to be known.
Further, the measurement of the central venous pressure (Pcvp) is
available, but omitted during the parameter identifiability study
since it is approximated in our model using a constant pressure
source (Pr). As will be shown, this measurement can be used to
calculate the value of Rsvr.

In this section, we demonstrate the use of parameter identifi-
ability in the first stage of our approach, to highlight a subset of
CVS model parameters that can be identified using available
measurements. When such a study is done early during the design
of the identification algorithm, it helps identify parameters that
will need approximation, and may justify the need for additional
measurements. For the CVS model represented by equation set
(2), we investigate if the available measurements can be used to
identify most, if not all, of the parameters. A parameter is identifi-
able if the outputs of the model are sensitive to changes in the
value of that parameter [26]. We use the approach proposed by
Yao et al. [27] where the CVS model is simulated with nominal
parameter values within the physiologically expected range.
Available measurements are used to construct a sensitivity matrix
to highlight the most identifiable parameter. A residual is calcu-
lated iteratively for the remaining parameters which ranks them
based on their identifiability. An advantage of this approach over
nonlinear observability is the ability to highlight unidentifiable
parameters, i.e., parameters with a low residual, which can then
be approximated or estimated indirectly.

The CVS model shown here comprises three modes as outlined
in Sec. 3. Consequently, parameter identifiability is analyzed for
each of them, namely, ejection, filling, and isovolumic contrac-
tion/expansion. Table 2 summarizes parameters in descending
order of identifiability for each mode and includes their residual
values. Based on parameter identifiability, the following decisions
are made:

� During systole (combination of Isovolumic contraction and
Ejection), B and Emax are identified.

� During diastole (combination of Isovolumic expansion and
Filling), the values of B and Emax estimated from systole are
used, and A is identified.

� Both Pr and Rv are ranked lower during Ejection and Filling.
During Filling, although Rv is ranked above A, we failed to
reliably identify this parameter in simulation tests. Conse-
quently, we choose to not identify Pr and Rv using Eq. (2).

� It is not possible to identify Cs when using the complete CVS
model (Eq. (2)) with available measurements.

The identifiability study reveals that four of the eight parame-
ters, namely, Pr, Rsvr, Cs, and tvc cannot be identified using Eq. (2)
with the available measurements. The identification of these
parameters must be done using a different model, or indirectly;

Table 1 List of parameters of the CVS model

Parameter Description Units

Pr Constant pulmonary circulation pressure mmHg
Rv AV and MV resistance mmHg s/mL
A Passive LV elastance mmHg
B Passive LV elastance 1/mL
Emax Maximum LV elastance mmHg/mL
Rsvr Systemic vascular resistance mmHg s/mL
Cs Systemic compliance mL/mmHg
tvc Ventricular contraction time s

Table 2 Descending order of parameter identifiability (residual
is calculated for parameters following the most identifiable one)

Ejection Filling Isovolumic

Parameter Residual Parameter Residual Parameter Residual

B — Emax — Emax —
Emax 39.21 B 136.45 B 207.54
Pr 6.89 Rv 20.10 Rv 96.58
A 0.38 A 9.74 A 9.41

Cs 0.5 Cs 3.35
Rsvr 2.05
Pr 0.41
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the process for which is addressed shortly. The value of tvc and Pr

can be approximated using the Plv measurement heuristically as
follows:

� The heart rate (HR) can be determined by identifying the
peaks in the Plv measurement waveform. The estimation of
HR becomes easier if an electrocardiogram trace is available.
An equation that relates HR to tvc, such as the one presented
in Ref. [12] or Ref. [28] can then be used to approximate its
value. If these values do not result in satisfactory identifica-
tion of other parameters, then the Plv waveform can be
graphically analyzed to approximate tvc. During simulation
experiments, we were able to approximate tvc using the equa-
tion from Ref. [12]. However, we had to graphically approxi-
mate tvc during experimental tests. In both cases,
identification of other parameters was satisfactory.

� The value of Pr can be approximated as the left ventricle
pressure at the onset of ventricular contraction, and this value
can be tuned heuristically as needed. This approach worked
well for us in both simulation and experimental tests.

The value of Rsvr can be approximated using the standard rela-
tion, ðPmap � PcvpÞ=CO, where Pmap is the mean arterial pressure,
Pcvp is the mean central venous pressure, and CO is the cardiac
output. The value of Pcvp is usually small (�5 mmHg) compared
to Pmap, and can be approximated if Pcvp is not available for
measurement.

To identify Cs, we can use the SC portion of the CVS model,
hereby termed as SC model. The state dynamics comprise a sys-
tem with a single differential equation,

States: x ¼ Pao

� �

Dynamics: _Ps ¼
1

Cs
Qvad þ Qa �

Pao

Rsvr

� �

Outputs: y ¼ Pao Qa

� �T
Inputs: u ¼ Qvad Plv

� �T
(7)

Parameter identifiability confirms that measurements of Pao and
Qa can be used with this equation to identify Cs. Additionally, Rv

is also revealed to be identifiable using this model, and we thus
omit it from the list of parameters to identify using the previous
model (2). This is consistent with the findings of previous works
on the identification of SC as discussed in Ref. [4]. Section 3.3
outlines the second stage of our approach, where an algorithm is
designed to sequentially estimate identifiable parameters and
approximate the others.

3.3 Parameter Identification Algorithm. This section
describes the algorithm used to identify or approximate all of the
eight parameters of the CVS model. The algorithm comprises four
steps that are briefly described as follows. A block diagram of the
algorithm is shown in Fig. 2 as well.

Step 1: Using the Plv waveform, approximate the value of Pr

and tvc as described in Sec. 3.2.
Step 2: Using the values of Pr and tvc from step 1, perform iden-
tification of Cs and Rv using a UKF based on the SC model (7)
with measurements of Pao and Qa.
Step 3: Values identified or approximated from steps 1 and 2
are used to perform identification of A, B, and Emax using a
UKF based on the CVS model (Eq. (2)) with measurements of
Plv, Pao, and Qa. As discussed in Sec. 3.2, within each cardiac
cycle B and Emax are first identified during systole, and A is
identified during diastole. The mode of the system is deter-
mined using equation (3). To avoid erroneous switching, we
pass the Qa signal through a lowpass filter with a cutoff fre-
quency of 30 Hz.
Step 4: The identified CVS model is simulated using MATLAB

R2019b (The MathWorks, Inc., Natick, Massachusetts), and the
normalized root mean squared error (nRMSE) is calculated
between simulated and measured signals of Plv, Pao, and Qa. If
the nRMSE is satisfactory, the identified model can be used as
a basis for other physiological algorithms. If the nRMSEs are
not satisfactory, steps 1–4 are repeated with adjusted values of
Pr and tvc in step 1. Our study deemed nRMSEs as satisfactory
when the identified model could estimate SVR with accuracy
�10%.

Unscented Kalman filter for model based identification: The
identification of parameter sets fCs, Prg and fA;B;Emaxg is per-
formed recursively using a UKF that is based on the system mod-
els from Eqs. (2) and (7), respectively. The system states for both
cases are augmented with the unknown parameters to form an
augmented state vector. Zero dynamics are assumed for the
parameter states, as they are assumed to remain constant over the
period of observation. A compact form of the UKF equations is
provided in Table 3. The scaling parameters of the UKF were set
as a ¼ 10�3;j ¼ 0;b ¼ 2. A detailed discussion of the UKF can
be found in Ref. [25].

3.4 Description of Tests. As a description of the third and
final stage of our approach, this section summarizes how results
from simulations and from animal experiments were used to eval-
uate the performance and robustness of the PIA. In both simula-
tions and experiments, it is assumed that measurements of Plv,
Pao, Qa, and Qvad are available.

Simulations: Simulations were conducted using a CVS with 12
dynamic states [12], providing a richer dynamic dataset to be ana-
lyzed with the simplified models used for estimation. The 12 state
model was numerically solved with Euler integration using a step
size of 1 ls, and Gaussian white noise was added to the relevant
signals. This model is referred to as the computational model
hereafter.

Data from animal experiments: Our study makes use of data
collected during acute animal experiments conducted by Windmill
Cardiovascular Systems, Inc. (Austin, TX) in an animal laboratory
at UTHealth-Houston. An anesthetized calf was implanted with a

Fig. 2 Algorithm used for parameter identification of CVS model. Solid lines on top of the boxes represent sig-
nals provided as measurements and dashed lines represent signals provided as inputs. The high and low limits
for nRMSE can be manually set.
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pulsatile TORVADTM (Windmill Cardiovascular Systems, Inc.,
Austin, Texas) system, an LVAD under development. The TOR-
VADTM was operated in synchronous mode, delivering a mean
flowrate of 1.9 L/min. LVAD pump blood flow was measured
with an ultrasonic flow probe attached to the pump inflow cannula
(ME11PXL Transonic Systems Inc, Ithaca, NY). The pressure and
flow sensors used in the acute experiments follow methods as in
Ref. [29]. The internal carotid and jugular veins were exposed,
and central venous pressure was measured via the left internal jug-
ular vein. Left atrial pressure (Pla) was measured with a fluid-
filled pressure transducer (Becton Dickinson DTX Plus trans-
ducer, ref 682018, Becton Dickinson Infusion Therapy Systems,
Sandy, UT) via a catheter placed in the left atrial appendage. Left
ventricular pressure (Plv) was measured with a Millar catheter
(model SPR-524 3.5F Mikro-tip Millar Instruments, Inc., Hous-
ton, TX) placed near the LV apex through a 4F sheath. Aortic
pressure (Pao) was measured with a Millar catheter placed in the
ascending aorta. Aortic blood flow (Qa) was measured with a
20 mm perivascular ultrasonic flow probe at the base of the aorta
(MA20PAX, Transonic Systems Inc, Ithaca, NY).

Data testing: Three tests were conducted using the data gener-
ated from simulations and collected during the animal experiment.

Test I: To evaluate the performance of the parameter identifica-
tion algorithm, it was applied to three data sets. The first two
data sets were generated by simulating the 12-state computa-
tional model with its parameters set to mimic a healthy patient

and one with critical heart failure. Parameter values chosen to
represent each patient state were taken from Ref. [12]. The third
data set was taken from the acute animal experiment database.
For each run of the algorithm, the estimated parameters were
plotted against time to observe convergence, and the nRMSE of
the identified CVS model was compared to the measured data.
Test II: The true values of A;B;Emax;Cs;Rsvr, and Rv were
sampled from a uniform distribution with a range of 620% of
the base values taken from Ref. [12], and used to generate noisy
data by simulating the computational model. A total of 100 data
sets representative of a healthy patient, and 100 representative
of one with critical heart failure were generated. Since the
approximation of Pr and tvc requires visual inspection of the Plv

waveform, the values of these two parameters were fixed for
the healthy and heart failure cases. In order to maintain the
same value of tvc, HR was not varied. For all healthy cases, the
value of �V0 was set to 150 mL and for all heart failure cases, it
was set to 250 mL. For each data set, the parameter identifica-
tion algorithm was applied and the mean and standard deviation
in the errors of estimated parameters was calculated. Addition-
ally, the correlation between true and estimated parameter val-
ues was calculated.
Test III: The parameter identification algorithm presented in
this paper requires an initial guess of �V0. The value of this ini-
tial guess was varied to evaluate convergence and nRMSE of
the identified CVS model during simulations of healthy and
heart failure patient.

4 Results

Test I: For each of the three data sets, the parameter identifica-
tion algorithm was applied to first approximate the value of Pr and
tvc, and then to recursively estimate the values of fCs, Rvg and
fA;B;Emaxg. A plot of the recursive parameter estimates versus
time is shown for the heart failure and animal experiment data
sets in Figs. 3 and 4, respectively. The figures also compare the
signals generated from the identified CVS model to the measured
signals. Table 4 summarizes identified parameters and nRMSEs
for each dataset.

Test II: The errors in identifying each of A;B;Emax;Cs, and Rv

were collected for all 200 runs, and the mean values (�e) and stand-
ard deviations (re) were calculated. Additionally, the linear corre-
lation between actual parameters (R2) and identified parameters
was calculated. The parameters Pr and tvc were excluded from this
analysis because for each case (healthy and heart failure), a fixed
value was assigned to them as described in Sec. 3.4. Table 5 sum-
marizes all resulting statistics.

Test III: The initial guess for �V ¼ Vlv � V0 was varied between
130 to 155 mL for the healthy case and 202 to 247 mL for the
heart failure case to give a total of 50 test runs of the parameter
identification algorithm. For each test run, the identified CVS
model was simulated and its outputs, namely, Plv, Pao, and Qa,
were compared to the corresponding signals generated from the
computational model. The nRMSE of these outputs from each test
run was analyzed to calculate the mean and standard deviation.
These statistics are summarized in Table 6.

5 Discussion

The objective of Test I was to study the performance of the PIA
in terms of convergence time and identification accuracy. As
shown in Fig. 2, the first step of the identification procedure
involves visually inspecting the Plv waveform to determine an
approximate value of Pr and tvc. After completing the identifica-
tion of Cs;Pr;A;B, and Emax, the PIA is terminated if nRMSEs
are satisfactory. In order to determine what can be considered satis-
factory for the nRMSEs, we used the identified parameters for the
animal experiment data for the CVS model, and performed SVR
estimation based on this model as shown in Ref. [6]. We were able
to achieve an estimation accuracy of �3:4%. The satisfactory

Table 3 UKF Equations based on a discretized system and
measurement model

System
model

xk ¼ xk�1 þ f ðtk�1; xk�1; uk�1Þdtþ wk�1;
w � Nð0;QdtÞ

Measurements yk ¼ hðtk; xk;ukÞ þ mk; m � Nð0;RÞ

Initialization x̂0 ¼ E½x0�

P0 ¼ E½ðx0 � x̂0Þðx0 � x̂0ÞT�

x̂a
0 ¼ E½xa� ¼ ½ x̂T

0 0 0 �T

Pa
0 ¼ E½ðxa

0 � x̂a
0Þðxa

0 � x̂a
0Þ

T� ¼
P0 0 0

0 Qdt 0

0 0 R

2
4

3
5 [4]

Sigma points va
k�1 ¼ ½ x̂a

k�1 x̂a
k�16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLþ kÞPa

k�1

p
� [3.5] [2]

Time update vx
kjk�1 ¼ vx

k�1 þ f ðtk�1; v
x
k�1; uk�1Þdtþ vw

k�1

x̂�k ¼
X2L

i¼0

W
ðmÞ
i vx

i;kjk�1

P�k ¼
X2L

i¼0

W
ðcÞ
i ½ v

x
i;kjk�1 � x̂�k �½ vx

i;kjk�1 � x̂�k �T

Ykjk�1 ¼ hðtk; vx
kjk�1;ukÞ þ v�kjk�1

ŷ�k ¼
X2L

i¼0

W
ðmÞ
i Yi;kjk�1 [3]

Measurement
update Pŷk ŷk

¼
X2L

i¼0

W
ðcÞ
i ½ Yi;kjk�1 � ŷ�k �½ Yi;kjk�1 � ŷ�k �T [3.5]

Pxkyk
¼
X2L

i¼0

½ vi;kjk�1 � x�k �½ Yi;kjk�1 � ŷ�k �T

K ¼ Pxkyk
P�1

ŷk ŷk

x̂k ¼ x̂�k þKðyk � ŷ�k Þ

Pk ¼ P�k �KPŷk ŷk
KT [2]
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accuracy of SVR estimation indicates the sufficiency of the nRMSE
values shown for the animal experiment dataset. Similar, if not
lower, values of nRMSE were achieved for the healthy and heart
failure data sets, and all data sets showed convergence within 20 s.

Test II was used to study the robustness of PIA. Over the 200
test cases, there was good correlation between identified and true
values for the parameters Emax and Cs. Parameters A and B are
weakly correlated to the true values, and Rv was not correlated to
its true value. All 200 runs resulted in stable convergence of the
parameters. These results indicate that Rv is the least sensitive of
the identified parameters, but is identified in a stable manner
nevertheless and the overall identified CVS model satisfactorily
replicates the measured signals and can be used for accurate SVR
estimation. A possible reason for the poor correlation of Rv is the
absence of an inertial element in the CVS model used for this
paper. In the more complex computational model, inductors repre-
sent inertial effects in the systemic circulation and in the absence

Fig. 3 Results from heart failure patient simulation: (a) estimated parameters versus time and (b) nRMSE of signals gener-
ated from identified model versus simulation

Fig. 4 Results from animal experiment: (a) estimated parameters versus time and (b) nRMSE of signals generated from iden-
tified model versus measured during animal experiment

Table 4 Summary of results from test I

Healthy Heart failure Experiment

Actual Estimate Actual Estimate Estimate

A (mmHg) 0.03 0.0252 0.18 0.314 0.741
B (1/mL) 0.05 0.0492 0.016 0.016 0.0314
Emax (mmHg/mL) 3.25 3.2 0.3 0.34 2.6
Cs (mL/mmHg) 1.25 1.31 0.65 0.889 1.26
Rv (mmHg s/mL) 0.0025 0.00479 0.0025 0.015 0.0055
Rsvr (mmHg s/mL) 0.975 0.9748 1.075 1.0752 0.7684
Pr (mmHg) — 3 — 13.8 18
tvc (s) — 0.41 — 0.39 0.6
nRMSE Plv 1.77% 5.1% 16.45%
nRMSE Pao 15.28% 19% 20.4%
nRMSE Qa 6.76% 11% 10.48%
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of these model elements, it may fall upon Rv to try and compen-
sate for those effects, thereby departing from the true value.

The PIA presented in this paper relies upon an initial guess for �V .
In the absence of a measurement of Vlv, the identified CVS model is
nonunique. This fact was discussed in Ref. [23], and was confirmed
through Test III. When the initial guess for �V was varied, the identi-
fied values for A and B changed such that the final nRMSE of the
identified CVS model was similar for all runs with a maximum
standard deviation in nRMSE observed at 5.5% for Qa. Parameters A
and B directly affect Plv generated from the CVS model, and these
two parameters appear to compensate for different values of �V0.

The primary motivation of this work was to outline a three-
staged approach for designing a PIA and to demonstrate this for a
specific model. Of the three stages, the first stage of parameter
identifiability can help plan for data collection before, during and
after the LVAD implantation procedure. Section 3.2 demonstrates
the utility of this stage in highlighting unidentifiable parameters
that needed approximation, and in clinical scenarios, this insight
could guide the inclusion or exclusion of measurements from the
LVAD recipient in advance.

6 Conclusions

As the technology for LVADs improves and their reliability
increases, researchers are investigating the use of on-board physi-
ological control and estimation algorithms. For model-based algo-
rithms, identification of these models becomes a necessary step
before LVAD implantation. These models often trade fidelity for
low computational burden and thus are lower order. The identifi-
cation procedure must serve to initialize this model so that the end
goal of physiological estimation/control is met with satisfactory
accuracy. This paper presents a systematic three-staged approach
to solving the parameter identification problem that can be applied
to a variety of scenarios.

� Depending on the available measurements, the parameter
identifiability step can help isolate those parameters of the
chosen model basis, which need to be approximated.

� Once identifiable parameters have been selected, we demon-
strate the use of the UKF for parameter identification. Due to
its ability to handle nonlinear dynamics without using Jaco-
bians and Hessians, the UKF can be adapted to different
models and measurements with satisfactory performance.

� Finally, the paper demonstrates how to test the performance
and robustness of the PIA. In particular, the nRMSE tests
could ensure that the identified CVS model is able to repro-
duce the measurement signals so that final physiological con-
trol/estimation accuracy is satisfactory.

In the future, we plan to compare the performance of the UKF
with a second-order EKF. In this paper, we visually study the Plv

waveform to fix values of Pr and tvc. A possible extension of the

work could investigate ways of automating this procedure, possi-
bly leading to improved identification accuracy.
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